Reflections on F-theory and the Swampland Cobordism Conjecture

Jonathan J. Heckman

University of Pennsylvania

Based On:

Hopefully Soon:

```
hep-th/???????? w/ Debray, Dierigl, Montero
hep-th/???????? w/ Debray, Dierigl, Montero
hep-th/???????? w/ Dierigl, Montero, Torres
```

Earlier Work:

hep-th/2107.14227 w/ Debray, Dierigl, Montero hep-th/2012.00013 w/ Dierigl

F-Theory

¿What is F-Theory?

IIB Duality Implemented Geometrically

$$\tau = C_0 + ie^{-\Phi}$$

¿What is F-Theory?

IIB Duality Implemented Geometrically

F-Theory and String Feno

GUT Models: Flavor, Extra Sectors, Cosmology,...

JJH, Vafa + many

Example Feno: W-Mass Anomaly via probe D3

JJH '22 (see also Basiouris Leontaris '22)

Recently: Much Progress in Global Models

Cvetic et al.; Taylor et al.

Ingredients (Usually SUSY)

All these constructions involve ∩ 7-Branes, D3-Branes, Fluxes,... (Typically SUSY)

¿Are There Other Objects in F-Theory?

¿Non-SUSY Tools?

Non-SUSY Tools

• No superpartners have been seen (yet)

"...before the rooster crows, you will deny me three times..."

• SUSY breaking ingredients?

• How to Robustly Identify?

Swampland Cobordism Conjecture

McNamara Vafa '19

See also talk by Blumenhagen

Cobordisms

Specify bundle over k-manifold: can we interpolate? Equivalence Relation:

Cobordism Group: $\Omega_k^{\mathcal{G}}$

Subtraction: Addition w/ Orientation Reversal

No Global Symmetries

Send Topological Defect Into Black Hole...

$$\Rightarrow \Omega_k^{\text{QG}} = 0$$

What If
$$\Omega_k^{\mathcal{G}} \neq 0$$
?

Prediction: A New Object, which trivializes Ω_k^{QG} !

Defect View

"Flux" from Defect Measured by Bounding Space:

"Bird's Eye View"

"In Profile"

Dualities and Bordisms

Compute $\Omega_k^{\text{IIB Dualities}}$ to predict new objects

Duality Group

IIB Duality Group

IIB SUGRA has $SL(2,\mathbb{R})$

"Broken to $SL(2,\mathbb{Z})$ by branes / flux quantizⁿ, etc."

Including Fermions: $Mp(2,\mathbb{Z}) \to SL(2,\mathbb{Z})$ (dilatini + gravitini)

Pantev Sharpe '16

Including Reflections: Pin^+ Cover of $GL(2,\mathbb{Z}) \equiv GL^+(2,\mathbb{Z})$

Tachikawa Yonekura '18

IIB Duality Group

IIB SUGRA has $SL(2,\mathbb{R})$

"Broken to $SL(2,\mathbb{Z})$ by branes / flux quantizⁿ, etc."

Including Fermions: $Mp(2,\mathbb{Z}) \to SL(2,\mathbb{Z})$ (dilatini + gravitini)

Pantev Sharpe '16

Including Reflections: Pin^+ Cover of $GL(2,\mathbb{Z}) \equiv GL^+(2,\mathbb{Z})$

Tachikawa Yonekura '18

IIB Duality Group

Reflections and $GL(2,\mathbb{Z})$

$$\tau = C_0 + ie^{-\Phi} \colon \tau \mapsto -\overline{\tau}$$

Reflections and $GL(2,\mathbb{Z})$

Bordism Duality Groups

Setup

Take IIB SUGRA (10D Spacetime) + " \mathcal{G} -Duality Bundle"

Demand $\frac{Spin \times \mathcal{G}}{\mathbb{Z}_2}$ Structure Group

 $\Omega_k^{SL(2,\mathbb{Z})}$ (Basic Duality Group)

 $\Omega_k^{Mp(2,\mathbb{Z})}$ (+ Fermions)

 $\Omega_k^{GL^+(2,\mathbb{Z})}$ (+ Fermions + Reflections)

Illustrative Example: $\Omega_1^{\mathcal{G}}$

Dierigl JJH '20; Debray Dierigl JJH Montero '22

Illustrative Example: $\Omega_1^{\mathcal{G}}$

Dierigl JJH '20; Debray Dierigl JJH Montero '22

$$\Omega_1^{SL(2,\mathbb{Z})} = \mathbb{Z}_2 \times \mathbb{Z}_{12}$$

$$\Omega_1^{Mp(2,\mathbb{Z})} = \mathbb{Z}_3 \times \mathbb{Z}_8$$

$$\Omega_1^{GL^+(2,\mathbb{Z})} = \mathbb{Z}_2 \times \mathbb{Z}_2$$

 $\Omega_1^{Mp(2,\mathbb{Z})}$

\mathbb{Z}_3 Factor of $\Omega_1^{Mp(2,\mathbb{Z})}$

$$\Omega_1^{Mp(2,\mathbb{Z})} = \mathbb{Z}_3 \times \mathbb{Z}_8$$

F-theory Picture: $\partial(T^2 \times \mathbb{C})/\mathbb{Z}_3$

Duality Bundle: $\mathbb{E} \to S^1/\mathbb{Z}_3$

These are 7-branes with $\tau = \exp(2\pi i/3)$

Example: E_6 gauge group: $y^2 = x^3 + z^4$ "Type IV^* "

Example: SU(3) gauge group: $y^2 = x^3 + z^2$ "Type IV"

\mathbb{Z}_8 Factor of $\Omega_1^{Mp(2,\mathbb{Z})}$

$$\Omega_1^{Mp(2,\mathbb{Z})} = \mathbb{Z}_3 \times \mathbb{Z}_8$$

F-theory Picture: $\partial(T^2 \times \mathbb{C})/\mathbb{Z}_4$

Duality Bundle: $\mathbb{E} \to S^1/\mathbb{Z}_4$

These are 7-branes with $\tau = \exp(2\pi i/4)$

Example: E_7 gauge group: $y^2 = x^3 + z^3x$ "Type III^* "

Example: SU(2) gauge group: $y^2 = x^3 + zx$ "Type III"

 $\Omega_1^{GL^+(2,\mathbb{Z})}$

$$\Omega_1^{GL^+(2,\mathbb{Z})} = \mathbb{Z}_2 \times \mathbb{Z}_2$$

STILL have 7-branes with $\tau = \exp(2\pi i/4)$

DON'T have 7-branes with $\tau = \exp(2\pi i/3)$

A NEW \mathbb{Z}_2 Class: "Reflection 7-Brane"

S-Dual
$$G$$
-Brane F_L -Brane

$$\Omega_1^{Mp(2,\mathbb{Z})}$$
 vs $\Omega_1^{GL^+(2,\mathbb{Z})}$

Eating \mathbb{Z}_3 with an R7 $(g^3 = 1 \text{ in } \mathbb{Z}_3)$

R7-Branes

$GL(2,\mathbb{Z})$ Monodromy

S-Dual
$$M_{\Omega} = \begin{bmatrix} +1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$M_{F_L} = \begin{bmatrix} -1 & 0 \\ 0 & +1 \end{bmatrix}$$

$$M_{SO(8)} = \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}$$

SO(8) 7-Brane: $y^2 = x^3 + \alpha z^2 x + z^3$

ΩF_L Bound State

 Ω and F_L Break SUSY (no Q's preserved)

But SO(8) 7-Brane (4 D7's and an O7⁻) Is Supersymmetric

 $\Omega + F_L \rightarrow SO(8) + \text{radiation}$

Processes

$$\Omega + \Omega \rightarrow \text{radiation}$$

$$F_L + F_L \rightarrow \text{radiation}$$

$$\Omega + F_L \rightarrow SO(8) + \text{radiation}$$

¿Stability?

Not Required by Cobordism Conjecture...

Analogous to Type I D7-Brane (Unstable)
Sen '98

 Ω $GL^{+}(2,\mathbb{Z})$ Monodromy Unchanged

Rearrangements

Sen Limit: F-th on K3 with $SO(8)^4$

10D Spacetime: $\mathbb{R}^{7,1} \times \mathbb{CP}^1$

$$egin{pmatrix} \Omega F_L & \Omega F_L \ \Omega F_L & \Omega F_L \ \end{pmatrix} = egin{pmatrix} SO(8) & SO(8) \ SO(8) & SO(8) \ \end{pmatrix}$$

How About $\Omega_k^{\mathcal{G}}$?

$$\Omega_k^{Mp(2,\mathbb{Z})}$$
 and $\Omega_k^{GL^+(2,\mathbb{Z})}$

 $\Omega_k^{Mp(2,\mathbb{Z})}$ for k odd all known SUSY bkgnds

 $\Omega_k^{GL^+(2,\mathbb{Z})}$ for k odd: Just add R7's!

S-Folds: Garcia-Etxebarria Regalado '15

S-Folds and $\Omega_5^{Mp(2,\mathbb{Z})}$

S-Fold: Non-Perturbative Gen^n of O3-Plane

$$\Omega_5^{Mp(2,\mathbb{Z})} = \mathbb{Z}_{32} \times \mathbb{Z}_2 \times \mathbb{Z}_9$$

F-theory Picture:

$$\mathbb{Z}_{32}$$
 via $\partial(\mathbb{C}^3 \times T^2)/\mathbb{Z}_4$

"Standard" Spin- \mathbb{Z}_8 -Bundle

$$\mathbb{Z}_2$$
 via $\partial(\widetilde{\mathbb{C}}^3 \times T^2)/\mathbb{Z}_4$

Different Spin- \mathbb{Z}_8 Bundle!

$$\mathbb{Z}_9$$
 via $\partial(\mathbb{C}^3 \times T^2)/\mathbb{Z}_3$

 \mathbb{Z}_9 via $\partial(\mathbb{C}^3 \times T^2)/\mathbb{Z}_3$ "Standard" Spin- \mathbb{Z}_6 Bundle

4D SCFTs

Probe with N D3-Branes \Rightarrow SCFTs (natural extra sectors)

$$\mathbb{Z}_{32}$$
 via $\partial(\mathbb{C}^3 \times T^2)/\mathbb{Z}_4$ "Standard" Spin- \mathbb{Z}_8 Bundle $\Rightarrow \mathcal{N} = 3$ SCFT

$$\mathbb{Z}_2$$
 via $\partial(\widetilde{\mathbb{C}}^3 \times T^2)/\mathbb{Z}_4$ Different Spin- \mathbb{Z}_8 Bundle! $\Rightarrow \mathcal{N} = 1$ SCFT

$$\mathbb{Z}_9$$
 via $\partial(\mathbb{C}^3 \times T^2)/\mathbb{Z}_3$ "Standard" Spin- \mathbb{Z}_6 Bundle $\Rightarrow \mathcal{N} = 3$ SCFT

4D SCFTs

Probe with N D3-Branes \Rightarrow SCFTs (natural extra sectors)

$$\mathbb{Z}_{32}$$
 via $\partial(\mathbb{C}^3 \times T^2)/\mathbb{Z}_4$

 \mathbb{Z}_{32} via $\partial(\mathbb{C}^3 \times T^2)/\mathbb{Z}_4$ "Standard" Spin- \mathbb{Z}_8 Bundle

$$\Rightarrow \mathcal{N} = 3 \text{ SCFT}$$

$$\mathbb{Z}_2 \text{ via } \partial(\widetilde{\mathbb{C}}^3 \times T^2)/\mathbb{Z}_4$$

$$\Rightarrow \mathcal{N} = 1 \text{ SCFT}$$

Different Spin- \mathbb{Z}_8 Bundle!

NEW SCFTs...

$$\mathbb{Z}_9$$
 via $\partial(\mathbb{C}^3 \times T^2)/\mathbb{Z}_3$

 \mathbb{Z}_9 via $\partial(\mathbb{C}^3 \times T^2)/\mathbb{Z}_3$ "Standard" Spin- \mathbb{Z}_6 Bundle

$$\Rightarrow \mathcal{N} = 3 \text{ SCFT}$$

Summary / Future

Summary / Future

Summary:

- $\Omega_k^{\text{Duality}} + \text{Swamp} \Rightarrow \text{Predict Objects}$
- New Non-SUSY Ingredient: R7-Brane
- New 4D $\mathcal{N} = 1$ SCFTs

Future:

- SUSY and R7?
- Bigger Duality Groups, e.g. $E_{7(7)}(\mathbb{Z})$?
- Model Building with R7's?